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Integral formulations can be convenient for computing eddy currents in complicated electromagnetic systems. However, large-scale
problems may quickly exceed the memory capacity even of very large machines since the matrices are fully populated. We aim at
illustrating how H-matrices with Adaptive Cross Approximation can provide an effective method to increase the size of the largest
solvable problems by means of Boundary Element Methods based on stream functions with modest implementation effort.
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I. INTRODUCTION

I INTEGRAL formulations can be convenient for computing
eddy currents in complicated electromagnetic systems, con-

sisting of many interconnected parts or components, since they
do not require the discretisation of non-conducting subdomains.
However, the inclusion of fine geometrical details may easily
lead to impractical memory and computational time require-
ments if the problem is not carefully addressed, since integral
formulations require the storage of fully populated matrices1.

Therefore, to be able to solve realistic problems it is nec-
essary to compress these matrices with suitable techniques.
Among others, the Fast Multiple Method (FMM) [1] is maybe
the most popular one for both low and high frequency prob-
lems. A more recent approach for integral operators with
asymptotically smooth kernels is based on the Adaptive Cross
Approximation (ACA) coupled with hierarchical matrix (H-
matrix) arithmetics [2].

In this paper, we aim at illustrating how H-matrices with
ACA can provide an effective method to increase the size of
the largest solvable problems by means of Boundary Element
Methods (BEM) with modest implementation effort. We refer
to the formulation implemented in the electromagnetic code
CAFE [3]. In contrast to other BEM formulations, it is based
on stream functions [4] and features also non-local equations
whose influence on the ACA sparsification, as far as we know,
is not yet documented in literature.

II. BEM FORMULATION

The numerical domain is discretised with a polygonal mesh
whose incidences are stored in the cell complex K [5]. The
current per unit of thickness 1-cochain I can be expressed by

I = GΨ + Hi, (1)

where Ψ is the 0-cochain whose coefficients are the values
of the stream function sampled on mesh nodes and i is an
array of independent currents; matrix G stores the edge-node

1The matrix size scales as n2, n being the number of unknowns, and its
inversion has a computational cost of the order of n3 if a direct solver is used.

incidences and the columns of H store the representatives of
H1(K− ∂K) generators [3] used to treat non-trivial domains.

Then, the discrete Faraday’s law is enforced

GT Ũ + iωΦ̃ = −iωGT Ãs, (2)

where Ũ is the electromotive force (e.m.f.) on dual edges, Φ̃ is
the magnetic flux produced only by the eddy currents on dual
faces and Ãs is the circulation of the magnetic vector potential
due to the source currents on dual edges. The two constitutive
laws are expressed in the discrete setting as

Ũ = RI and Ã = MI, (3)

where R and M are the classical resistance mass matrix and
the magnetic matrix [4], respectively.

By substituting (1), (3) and Φ̃ = GT Ã inside (2) and
taking into account also non-local Faraday’s laws, enforced
on H1(K̃) ' H1(K − ∂K) generators, one gets[

GTKG GTKH
HTKG HTKH

] [
Ψ
i

]
= −iω

[
GT Ãs

HT Ãs

]
. (4)

where K = R + iωM.

III. SPARSIFICATION VIA ADAPTIVE CROSS
APPROXIMATION AND H-MATRICES

ACA can directly use the computational routines of the
existing electromagnetic code without any major change. The
specific implementation within CAFE [3], aiming at the spar-
sification of the LHS in (4), has been achieved through the
hlibpro library [6].

In contrast to the FMM, where the kernel is approximated
by a sum of spherical multipole functions, ACA generates low-
rank approximations of far-field blocks from the entries of the
original matrix. The method works as follows. In a first step
the degrees of freedom are partitioned and clustered according
to a geometrical criterion. Then each cluster pair σ, τ , corre-
sponding to the sub matrix A(σ,τ) is tested against the admis-
sibility criterion min{diam(σ),diam(τ)} ≤ ηdist(σ, τ) where
diam(σ), diam(τ) are the cluster diameters, dist(σ, τ) is the
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Fig. 1. a) Geometry of the conducting structure of test case 1. b) Geometry of
the conducting structure of test case 2. Example of H1(K− ∂K) generators
arising from holes [3] are shown in red.

distance between the clusters and η the admissibility parameter.
If the cluster pair satisfies the criterion, the corresponding
matrix block belongs to the far-field, otherwise the clusters
are halved and the procedure is applied recursively until the
number of elements is larger than a specified threshold. The
matrix blocks are then stored with a hierarchical H-matrix
structure. The near-field submatrices are calculated exactly,
whereas the far-field interactions are approximated with the
ACA technique. Consider matrix block W ∈ Rm×n that
represent a far-field interaction. In principle, if the singular
value decomposition is applied to W, only a few singular
values are needed to represent the matrix, obtaining the low
rank approximation W̃k:

‖W̃ − W̃k‖F ≤ ε‖W̃‖F (5)

where k < m,n is the number of singular values used to
represent M̃, ε a specified accuracy and ‖ • ‖F the Frobenius
norm. The low rank approximation can be obtained in a smarter
way [7] without the construction of W̃ choosing a subset of
rows and columns, forming a cross, of the matrix such that

W̃k = UVT, U ∈ Rm×k,V ∈ Rn×k (6)

Since only a few entries of the original matrix must be
computed, it can be proved that the computational cost, as well
as the memory, of the matrix partitioning and the ACA ap-
proximation have linear-logarithmic complexity [8]. H-matrix
arithmetics can be used to define the inversion operator or the
LU decomposition of the H−matrix. When Krylov-type solver
are used, it is possible to choose a suitable k′ < k to perform an
approximate LU decomposition to be used as preconditioner.

IV. RESULTS

Two test cases are considered to validate the implementation.
1) Trivial domain: a metallic torus with two gaps (Fig. 1a),

discretized with 5457 triangles, 8290 edges, 2834 nodes,
subject to a uniform vertical magnetic field imposed by
proper BCs (sinusoidal Ãs at 100Hz).

2) Non-trivial domain: a thin 3D metallic shield with 9
holes (Fig. 1b), discretized with 11170 triangles, 17113
edges, 5935 nodes, subject to the field produced by a
circular loop (AC current, 50Hz) placed before it.

Tables I-II show the level of compression that can be
achieved as a function of the threshold ε which is used both in

the sparsification of the matrix as well as in the construction of
the LU preconditioner. The full matrix size would have been
105.14MBytes and 417.05MBytes, respectively. Iter indicates
the number of iterations of the preconditioned GMRES solver.

Note that the system matrices can be compressed to about
1/4 of the original size without significant errors in the solution.
Further reductions may be possible but require different set-
tings for the thresholds used in the sparsification of the system
matrix and the preconditioner.

Similar trends are also obtained for the large-scale eddy
current problems which will be presented in the extended
version of paper.

The pseudo-code of the algorithm that performs the sparsi-
fication of the LHS in (4) will be documented in the full paper
for the most general case (i.e. including non-trivial topologies).
A detailed analysis of the error of the solution (approximated
vs uncompressed) as a function of the threshold ε will also be
presented with different metrics for local and global quantities.
Another topic which will be addressed in the extended paper
will be the influence of minimal and non-minimal cohomology
generators on the obtainable sparsification. Finally, the issue of
introducing some sparsification also in the off-diagonal blocks
of (4) will also be addressed.

TABLE I
COMPRESSION AS A FUNCTION OF THRESHOLD ε FOR TEST CASE 1

ε Size [MB] % Compr. ratio Iter
1E-06 58.07 55.23% 1
1E-05 50.33 47.86% 2
1E-04 42.19 40.13% 2
1E-03 32.72 31.12% 3
1E-02 23.89 22.72% 4
1E-01 16.25 15.46% 5

TABLE II
COMPRESSION AS A FUNCTION OF THRESHOLD ε FOR TEST CASE 2

ε Size [MB] % Compr. ratio Iter
1E-06 408.43 97.93% 2
1E-05 400.74 96.09% 2
1E-04 383.39 91.93% 3
1E-03 332.05 79.62% 4
1E-02 217.76 52.21% 4
1E-01 114.68 27.50% 5
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